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Expressions are obtained for various gas-dynamic functions of dissociating nitro- 
gen tetroxide, taking account of the nonideality of the gas. 

As is known dissociating nitrogen tetroxide is a promising heat carrier and working 
medium for nuclear power plants. 

Gas-dynamic functions must play a large role in solving various problems in the dyna- 
mics of a reacting system 

N~Q~-iNOi~-iNO+O2 

A series of important gas-dynamic functions are now derived. In [i], it was found 
that* 
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R e l a t i n g  the  c r i t i c a l  v e l o c i t i e s  o f  t he  d i s s o c i a t i n g  and i d e a l  gases  t h r o u g h  t h e  c o r r e c -  
t i o n  c o e f f i c i e n t  ~cr ,  t he  f o l l o w i n g  e x p r e s s i o n  may be w r i t t e n  

2 2 k R To. (3) 
acr=- [c 9 k q- 1 ~N,O4 

The sound v e l o c i t y  i n  d i s s o c i a t i n g  gas was o b t a i n e d  in  [1] i n  t he  form 

a - - x  . - -  ( 4 )  
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Transforming from Eq. (4) to the critical velocity, i.e., taking T = Tcr , it is found that 

x ~ RTcr 
a2cr = 7 c r ~  �9 (5) 

~N,O4 

According to Eqs. (3) and (5) 
k +  1 Tcr 

~'cr= --2k ' Xicr T-~ (6) 

Since Ma = ~acr , solving Eqs. (3) and (4) simultaneously gives 

M2x~ T = ~ ~2r2 9 k To 
k - I -1  

or, substituting xiM 2 from here into Eq. (1), appropriate transformations give an expression 
for the gas-dynamic function in the form 

�9 In the present work, a zero subscript denotes stagnation parameters. 
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Using the equation of the adiabatic of the dissociating gas 

~T--[  

T ' 
an express ion  i s  w r i t t e n  for another  gas-dynamic func t ion  

k T 
po {1~1 kr- -1  }AT--l(  I kT-- 
P ~ kT [(Zef)p .T -- (Zef)p.. T] 1 ~ kr 

Then the equations of state 

R 
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lead to the function 
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In the above expressions 

hT--[ 

h T 

hT--I 
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(io) 
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k r - -  1 R o~ (12) 
kr ~ Cpef 

I = - ~ -  (no + n). (13) 

The coefficients ~ and w for dissociating nitrogen tetroxide take the following form 

[2] 
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The express ion  for  • takes  the form 
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where 

where 
., , -) 

i=l #=0 l j  
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V a l u e s  o f  AHpx and The coefficients a l j  a a j ,  and a 3 j  are taken from Table i of [i]. 
AHp2 are also given in [i] (see also [3]). 

It will be taken into account below that 

Zef  : Zs, (19) 

where 

s =  I + % o + % o e 2 o  . (20) 

The quantity Cpe f appearing the Eq. (12) is taken from the table of [4], which was com- 
piled on the basis of experimental specific-heat values Cpe f of the system 

N2Q~-2NO2~-2NO + O= 

in the gas phase [5]. The quantity $cr appearing in Eqs. (7), (9), and (ii) must be deter- 
mined. 

The velocity of sound in dissociating nitrogen tetroxide may be written in the form 

where 

R (21) 
a ---- g i /  k T , 

v ~N~O, 

R bJ2 - (22) --_ (Zef)p,T//e ]/#lq [~N,O, C p e f  

The critical velocity of dissociating nitrogen tetroxide may evidently be written in the 
form 

R r c , ,  
~NzO, (23) 

/ R 
Ycr---- (Z~f)Pcr. rcjk ]/' ~]cr ~N,O, (C6f)cr ~~ (24) 

The critical velocity of the dissociating gas may be related through the correction 
coefficient Ecr to the expression for the critical velocity of an ideal gas 

a c r = ~ r  I F  2 k R To " 
k -[- 1 ~N~O, 

Solving Eqs. (23) and (25) simultaneously, it is found that 

~2 k + 1 2 T c r  
~cr--  2 Nor ~o " 

(25) 

(26) 

Determining the value of the critical temperature from Eq. (7) with X = i and T = Tcr 
and substituting it into Eq. (26), the result obtained, after appropriate transformations, 
is 

~2 k @ l ~ [ 1 kT---1 { @  )po,Tcr__(Zef)pcr_,Tcr]}1-1 
gcr-- 2 V? r 1@ ~1- kr Y g r - - l ( ~ f  �9 (27)  

Expansion of Eq. (27) gives 

[2 = k + l  [ 1 R o) [ k 
cr V2c r ~ 1 +  ~ 'aN,O, Cpef  [ 2 gc2r t ( l+~ao+~oCqo)oo , re r  • 

i + + / ( '2 ?'( , 1 ~-~ ~i=1 /=0~ aiJg'T/ /io o,T --  (l @ (Zj. 0 ~- (zlo•2o)Pcr ,To r 1 -j- i=1 )=0E cii,wj ' %r rc . (28)  
cr  

T a k i n g  a c c o u n t  o f  E q s .  ( 1 2 ) ,  ( 1 9 ) ,  and  ( 2 0 ) ,  Eqs .  ( 7 ) ,  ( 9 ) ,  and  ( l l )  a r e  r e d u c e d  s u c c e s -  
s i v e l y  t o  t h e  f o r m  

[ I( )I 
To ! + 1 R co [(Zef)p,T "Z ~ ! R (') k o ^~ 

- -  ( efJpo, T] ! - -  -- ~gr '~'= , 
(29) 
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[ 1"r (0 [;(Z=;). r - - - ( Z . q )  ..T] 1 (30) 
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Equations (29)-(31) are gas-dynamic functions as a ratio of the stagnation parameters 
to the parameters of a flux of dissociating nitrogen tetroxide. 

For an ideal gas, where a~o = 0; a=o = 0; n = i; w = i; ~cr i; k T = k, Eqs. (29)-(31) 
take the usual form for a perfect gas, that is 

i--~- ] =: ~ 1 k - - 1  Lid], , (32) 
id 

k 

Po = 1 k '~  ~ $'id ' (33) 
id 

Po = 1 k - - t  %~. (34) 
\ P id k + l  

Now c o n s i d e r  o t h e r  g a s - d y n a m i c  f u n c t i o n s  t h a t  t a k e  a l a r g e  v a l u e  when i n t r o d u c e d  i n  t h e  
corresponding calculations. The continuity equation is used in the form 

G = r 

Then using the equation o f  state 

(35) 

R To, (36) po = (Zef)po ro P ~N~o, 

and a l s o  X = W/nor , and t a k i n g  a c c o u n t  o f  Eqs.  (23) and ( l l ) ,  Eq. (35) i s  w r i t t e n  i n  t h e  
form ~'3 s aiflr 
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The flow rate, expressed in terms of the actual pressure in the given cross section, 
may be written if the stagnation pressure value from Eq. (9) is substituted into Eq. (37). 

I 1 R c o  
~' i-J-~ ~N~O , Cpef X 

Then it is found that 

G = pF (1 + ~1o -F ~lo~zo)~.lr 1 + ~ . 2 = i=o xi ]p.r  cr k + 1 R/~xN,o, To 

3 4 auE[ ~ ,~ [ 
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\ i=t ]=0 
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(38) 

Now consider another gas-dynamic function, the reduced gas flow rate, i.e., the dimen- 

sionless current density 

9w 
q-- - (39) 

(P~)cr 
Taking account of Eq. (ii) and bearing in mide that w = acr %, the numerator of Eq. (39) is 

written in the form 

8 0 0  



1 

~'~=~'acl~~176 1 -~ - IR= -(~ I (Z~)p,T-- (Zef)po,Tt} h ' - lX 
(Zef)p T ]] ~NoO, Cpef , . [ 

( :) • 1 1 R ~o k ~ (40) 
~N20, @ef k ~ - !  ~ r%) hT--I 

AS fo r  an i d e a l  gas ,  t he  r educed  f l o w - r a t e  f u n c t i o n  of  d i s s o c i a t i n g  n i t r o g e n  t e t r o x i d e  i s  
ze ro  when % = 0 and 

1 

1 R ~ k ~e 
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Taking ~ = 1, t he  e x p r e s s i o n  fo r  the  denomina to r  in  Eq. (39) i s  o b t a i n e d  in  t he  form 
(Z. =~ r [ 1 R 

e~'p . . . .  1-4- 
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Substituting ow from Eq. (40) and (PW)cr from Eq. (41) into Eq. (39), and also taking account 
of the expression for (Zef) , the gas-dynamic function of the reduced flow rate for dissociat- 
ing nitrogen tetroxide is written in the expanded form 

( 3 4 CtiJ~i') 
q=-X( l+~ a~176  I + X  X • i~l 1=0 TI /Pcr'Tcr 
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On passing from dissociating to ideal gas k t = k, Zef = i, ~ = i, ~cr = i, the result 
is a function known in gas dynamics for a perfect gas 

1 

q i d =  ~id 1 k +  1 " 

As shown in [i, 2], all the gas-dyamic dependences of a perfect gas are absolutely in- 
applicable to dissociating gases, i.e., in the heat carriers and working media of nuclear 
power plants. The complication of the expressions obtained for the gas-dynamic functions of 
dissociating gas result from the physicochemical and thermophysical properties of these 
gases. 

As is known, a favorable influence on the thermophysical properties of chemically reac- 
ting systems comes from the presence of large thermal effects in both stages of the reaction. 

That heating of the gas is accompanied by heat absorption and consequently by decrease 
in molecular mass and increase in the gas content, while cooling of the gas is associated 
with heat liberation, resulting in increase in molecular mass and decrease in the gas con- 
stant, is sharply reflected in the structure of the formulas obtained. 

It is sufficient to say that the complexity of the gas-dynamic functions obtained is 
directly related to the physics of the phenomena. For example, e in Eq. (26) is the total 
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number of moles as a result of dissociation. In Eq. (26), the degree of dissociation of 
both first-order and second-order reactions is taken. 

In addition, all the gas-dynamic functions include the quantities rl, uJ, ~cr, and R/ll, 
depending also on the degree of dissociation, l~e desired quantities are greatly influenced 
by the effective isobaric specific heat Cpef, which is high in dissociating gases. Then, it 
must be noted that the quantity k T - i/k T appearing in all the expressions for the gas-dyna- 
mic functions, according to Eq. (12), depends also on Cpef, R/ll, and w. 

Thus, these considerations indicate, with great reliability, that the thermophysical 
and chemical properties of dissociating gases have a great influence on the gas-dynamic 
functions obtained. 
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TWO METHODS OF CALCULATING THE VELOCITY PROFILE OF A NON-NEWTONIAN 

LIQUID IN CYLINDRICAL CHANNELS OF ARBITRARY CROSS SECTION 

Yu. G. Nazmeev, G. R. Khalitova, 
and E. K. Vachagina 

UDC 678.532.135 

Two approaches to solving the problem of the flow of non-Newtonian liquid in cyl- 
indrical channels of arbitrary cross section are analyzed: variational and itera- 
tive approaches. 

Formulation of the Problem 

In the hydromechanis of non-Newtonian liquid, the problem of the velocity distribution 
in laminar steady flow in cylindrical singly connected channels of arbitrary cross section 
is known to be very interesting and of great practical importance. 

The system of motion and continuity describing the given problem may be written in the 

form 

av 
- o  

az 

with the boundary condition 

VIr  = O, 

where the second invariant of the deformation-rate tensor is 

- - -  c o n s t ,  (i) 

(2) 

(3) 
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